References
- Gagnon, J., & Forbes Technology Council. (2022, May 4). IBM Watson Health’s Challenges Tell Us More About Healthcare Data Than It Does About AI. Forbes.
- Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler, H., Lewis, M., Yih, W., Rocktäschel, T., Riedel, S., & Kiela, D. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks.
- Lu ♣♢ †, Z., et al. (2024). SMALL LANGUAGE MODELS: SURVEY, MEASUREMENTS, AND INSIGHTS.
- Microsoft. (2024). Phi-3 Technical Report: A Highly Capable Language Model Locally on Your Phone.
- Naamneh, R., & Bodas, M. (2024). The effect of electronic medical records on medication errors, workload, and medical information availability among qualified nurses in Israel– a cross sectional study. BMC Nursing.
- Nuance. (2024, October 6). Automatically document care and streamline workflows with DAX Copilot. Nuance.
- Rajkomar, A., Kannan, A., Chen, K., Vardoulakis, L., Chou, K., Cui, C., & Dean, J. (2019). Automatically Charting Symptoms From Patient-Physician Conversations Using Machine Learning. JAMA Internal Medicine.
- Rohan, T., Ishaan, G., Tianyi, C., Yann, D., Xuechen, L., Carlos, G., Percy, L., & Tatsunori B., H. (2023). Alpaca: A Strong, Replicable Instruction-Following Model.
- Suki Website. suki.ai.
- Tunstall, L., Beeching, E., Lambert, N., Rajani, N., Rasul, K., Belkada, Y., Huang, S., Von Werra, L., Fourrier, C., Habib, N., Sarrazin, N., Sanseviero, O., Rush, A. M., & Wolf, T. Zephyr: Direct Distillation of LM Alignment.
- Vegesna, A., Tran, M., Angelaccio, M., & Arcona, S. (2017). Remote Patient Monitoring via Non-Invasive Digital Technologies: A Systematic Review. Telemedicine Journal and E-Health.
- Wang, Y., Kordi, Y., Mishra, S., Liu, A., Smith, N. A., Khashabi, D., & Hajishirzi, H. SELF-INSTRUCT: Aligning Language Models with Self-Generated Instructions.