References

  1. Gagnon, J., & Forbes Technology Council. (2022, May 4). IBM Watson Health’s Challenges Tell Us More About Healthcare Data Than It Does About AI. Forbes.
  2. Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler, H., Lewis, M., Yih, W., Rocktäschel, T., Riedel, S., & Kiela, D. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks.
  3. Lu ♣♢ †, Z., et al. (2024). SMALL LANGUAGE MODELS: SURVEY, MEASUREMENTS, AND INSIGHTS.
  4. Microsoft. (2024). Phi-3 Technical Report: A Highly Capable Language Model Locally on Your Phone.
  5. Naamneh, R., & Bodas, M. (2024). The effect of electronic medical records on medication errors, workload, and medical information availability among qualified nurses in Israel– a cross sectional study. BMC Nursing.
  6. Nuance. (2024, October 6). Automatically document care and streamline workflows with DAX Copilot. Nuance.
  7. Rajkomar, A., Kannan, A., Chen, K., Vardoulakis, L., Chou, K., Cui, C., & Dean, J. (2019). Automatically Charting Symptoms From Patient-Physician Conversations Using Machine Learning. JAMA Internal Medicine.
  8. Rohan, T., Ishaan, G., Tianyi, C., Yann, D., Xuechen, L., Carlos, G., Percy, L., & Tatsunori B., H. (2023). Alpaca: A Strong, Replicable Instruction-Following Model.
  9. Suki Website. suki.ai.
  10. Tunstall, L., Beeching, E., Lambert, N., Rajani, N., Rasul, K., Belkada, Y., Huang, S., Von Werra, L., Fourrier, C., Habib, N., Sarrazin, N., Sanseviero, O., Rush, A. M., & Wolf, T. Zephyr: Direct Distillation of LM Alignment.
  11. Vegesna, A., Tran, M., Angelaccio, M., & Arcona, S. (2017). Remote Patient Monitoring via Non-Invasive Digital Technologies: A Systematic Review. Telemedicine Journal and E-Health.
  12. Wang, Y., Kordi, Y., Mishra, S., Liu, A., Smith, N. A., Khashabi, D., & Hajishirzi, H. SELF-INSTRUCT: Aligning Language Models with Self-Generated Instructions.